Astra DB Chat Memory
For longer-term persistence across chat sessions, you can swap out the default in-memory chatHistory
that backs chat memory classes like BufferMemory
for Astra DB.
Setupβ
You need to install the Astra DB TS client:
- npm
- Yarn
- pnpm
npm install @datastax/astra-db-ts
yarn add @datastax/astra-db-ts
pnpm add @datastax/astra-db-ts
- npm
- Yarn
- pnpm
npm install @langchain/openai @langchain/community
yarn add @langchain/openai @langchain/community
pnpm add @langchain/openai @langchain/community
Configuration and Initalizationβ
There are two ways to inialize your AstraDBChatMessageHistory
If you already have an instance of the AstraDB
client defined you can connect to your collection and initialize an instance of the ChatMessageHistory
using the constuctor.
const client = (client = new AstraDB(
process.env.ASTRA_DB_APPLICATION_TOKEN,
process.env.ASTRA_DB_ENDPOINT,
process.env.ASTRA_DB_NAMESPACE
));
const collection = await client.collection("YOUR_COLLECTION_NAME");
const chatHistory = new AstraDBChatMessageHistory({
collection,
sessionId: "YOUR_SESSION_ID",
});
If you don't already have an instance of an AstraDB
client you can use the initialize
method.
const chatHistory = await AstraDBChatMessageHistory.initialize({
token: process.env.ASTRA_DB_APPLICATION_TOKEN ?? "token",
endpoint: process.env.ASTRA_DB_ENDPOINT ?? "endpoint",
namespace: process.env.ASTRA_DB_NAMESPACE,
collectionName: "YOUR_COLLECTION_NAME",
sessionId: "YOUR_SESSION_ID",
});
Usageβ
Tip
Your collection must already exist
import { RunnableWithMessageHistory } from "@langchain/core/runnables";
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { ChatOpenAI } from "@langchain/openai";
import { AstraDBChatMessageHistory } from "@langchain/community/stores/message/astradb";
const model = new ChatOpenAI({
model: "gpt-3.5-turbo",
temperature: 0,
});
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant. Answer all questions to the best of your ability.",
],
new MessagesPlaceholder("chat_history"),
["human", "{input}"],
]);
const chain = prompt.pipe(model).pipe(new StringOutputParser());
const chainWithHistory = new RunnableWithMessageHistory({
runnable: chain,
inputMessagesKey: "input",
historyMessagesKey: "chat_history",
getMessageHistory: async (sessionId) => {
const chatHistory = await AstraDBChatMessageHistory.initialize({
token: process.env.ASTRA_DB_APPLICATION_TOKEN as string,
endpoint: process.env.ASTRA_DB_ENDPOINT as string,
namespace: process.env.ASTRA_DB_NAMESPACE,
collectionName: "YOUR_COLLECTION_NAME",
sessionId,
});
return chatHistory;
},
});
const res1 = await chainWithHistory.invoke(
{
input: "Hi! I'm Jim.",
},
{ configurable: { sessionId: "langchain-test-session" } }
);
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chainWithHistory.invoke(
{ input: "What did I just say my name was?" },
{ configurable: { sessionId: "langchain-test-session" } }
);
console.log({ res2 });
/*
{
res2: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- RunnableWithMessageHistory from
@langchain/core/runnables
- ChatPromptTemplate from
@langchain/core/prompts
- MessagesPlaceholder from
@langchain/core/prompts
- StringOutputParser from
@langchain/core/output_parsers
- ChatOpenAI from
@langchain/openai
- AstraDBChatMessageHistory from
@langchain/community/stores/message/astradb