Handle Multiple Retrievers
Sometimes, a query analysis technique may allow for selection of which retriever to use. To use this, you will need to add some logic to select the retriever to do. We will show a simple example (using mock data) of how to do that.
Setup
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/core @langchain/community @langchain/openai zod chromadb
yarn add @langchain/core @langchain/community @langchain/openai zod chromadb
pnpm add @langchain/core @langchain/community @langchain/openai zod chromadb
Set environment variables
OPENAI_API_KEY=your-api-key
# Optional, use LangSmith for best-in-class observability
LANGSMITH_API_KEY=your-api-key
LANGCHAIN_TRACING_V2=true
Create Index
We will create a vectorstore over fake information.
import { Chroma } from "@langchain/community/vectorstores/chroma";
import { OpenAIEmbeddings } from "@langchain/openai";
import "chromadb";
const texts = ["Harrison worked at Kensho"];
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const vectorstore = await Chroma.fromTexts(texts, {}, embeddings, {
collectionName: "harrison",
});
const retrieverHarrison = vectorstore.asRetriever(1);
[Module: null prototype] {
AdminClient: [class AdminClient],
ChromaClient: [class ChromaClient],
CloudClient: [class CloudClient extends ChromaClient],
CohereEmbeddingFunction: [class CohereEmbeddingFunction],
Collection: [class Collection],
DefaultEmbeddingFunction: [class _DefaultEmbeddingFunction],
GoogleGenerativeAiEmbeddingFunction: [class _GoogleGenerativeAiEmbeddingFunction],
HuggingFaceEmbeddingServerFunction: [class HuggingFaceEmbeddingServerFunction],
IncludeEnum: {
Documents: "documents",
Embeddings: "embeddings",
Metadatas: "metadatas",
Distances: "distances"
},
JinaEmbeddingFunction: [class JinaEmbeddingFunction],
OpenAIEmbeddingFunction: [class _OpenAIEmbeddingFunction],
TransformersEmbeddingFunction: [class _TransformersEmbeddingFunction]
}
const texts = ["Ankush worked at Facebook"];
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const vectorstore = await Chroma.fromTexts(texts, {}, embeddings, {
collectionName: "ankush",
});
const retrieverAnkush = vectorstore.asRetriever(1);
Query analysis
We will use function calling to structure the output. We will let it return multiple queries.
import { z } from "zod";
const searchSchema = z.object({
query: z.string().describe("Query to look up"),
person: z
.string()
.describe(
"Person to look things up for. Should be `HARRISON` or `ANKUSH`."
),
});
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-3.5-turbo-0125",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-sonnet-20240229",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/firefunction-v1",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
import { ChatPromptTemplate } from "@langchain/core/prompts";
import {
RunnableSequence,
RunnablePassthrough,
} from "@langchain/core/runnables";
const system = `You have the ability to issue search queries to get information to help answer user information.`;
const prompt = ChatPromptTemplate.fromMessages([
["system", system],
["human", "{question}"],
]);
const llmWithTools = llm.withStructuredOutput(searchSchema, {
name: "Search",
});
const queryAnalyzer = RunnableSequence.from([
{
question: new RunnablePassthrough(),
},
prompt,
llmWithTools,
]);
We can see that this allows for routing between retrievers
await queryAnalyzer.invoke("where did Harrison Work");
{ query: "workplace of Harrison", person: "HARRISON" }
await queryAnalyzer.invoke("where did ankush Work");
{ query: "Workplace of Ankush", person: "ANKUSH" }
Retrieval with query analysis
So how would we include this in a chain? We just need some simple logic to select the retriever and pass in the search query
const retrievers = {
HARRISON: retrieverHarrison,
ANKUSH: retrieverAnkush,
};
import { RunnableConfig, RunnableLambda } from "@langchain/core/runnables";
const chain = async (question: string, config?: RunnableConfig) => {
const response = await queryAnalyzer.invoke(question, config);
const retriever = retrievers[response.person];
return retriever.invoke(response.query, config);
};
const customChain = new RunnableLambda({ func: chain });
await customChain.invoke("where did Harrison Work");
[ Document { pageContent: "Harrison worked at Kensho", metadata: {} } ]
await customChain.invoke("where did ankush Work");
[ Document { pageContent: "Ankush worked at Facebook", metadata: {} } ]